Guided Operators for a Hyper-Heuristic Genetic Algorithm

نویسندگان

  • Limin Han
  • Graham Kendall
چکیده

We have recently introduced a hyper-heuristic genetic algorithm (hyper-GA) with an adaptive length chromosome which aims to evolve an ordering of low-level heuristics so as to find good quality solutions to given problems. The guided mutation and crossover hyper-GA, the focus of this paper, extends that work. The aim of a guided hyper-GA is to make the dynamic removal and insertion of heuristics more efficient, and evolve sequences of heuristics in order to produce promising solutions more effectively. We apply the algorithm to a geographically distributed training staff and course scheduling problem to compare the computational result with the application of other hyper-GAs. In order to show the robustness of hyper-GAs, we apply our methods to a student project presentation scheduling problem in a UK university and compare results with the application of another hyper-heuristic method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

OPTIMAL OPERATORS OF GENETIC ALGORITHM IN OPTIMIZING SEGMENTAL PRECAST CONCRETE BRIDGES SUPERSTRUCTURE

Bridges constitute an expensive segment of construction projects; the optimization of their designs will affect their high cost. Segmental precast concrete bridges are one of the most commonly serviced bridges built for mid and long spans. Genetic algorithm is one of the most widely applied meta-heuristic algorithms due to its ability in optimizing cost. Next to providing cost optimization of t...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Automated Synthesis of Selection Operators in Genetic Algorithms Using Genetic Programming

Genetic algorithms must be fine-tuned in order to achieve the best results. In this study, we have proposed a new hyper-heuristic based on genetic programming for the automated synthesis of a selection operator in genetic algorithms. Black-Box Optimization Benchmarking is used as a training set and as a test set for estimating the generalization ability of a synthesized selection operator. The ...

متن کامل

A genetic algorithm selection perturbative hyper-heuristic for solving the school timetabling problem

Research in the domain of school timetabling has essentially focused on applying various techniques such as integer programming, constraint satisfaction, simulated annealing, tabu search and genetic algorithms to calculate a solution to the problem. Optimization techniques like simulated annealing, tabu search and genetic algorithms generally explore a solution space. Hyper-heuristics, on the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003